Modulation of Inhibitory Corticospinal Circuits Induced by a Nocebo Procedure in Motor Performance
نویسندگان
چکیده
As recently demonstrated, a placebo procedure in motor performance increases force production and changes the excitability of the corticospinal system, by enhancing the amplitude of the motor evoked potentials (MEP) and reducing the duration of the cortical silent period (CSP). However, it is not clear whether these neurophysiological changes are related to the behavioural outcome (increased force) or to a general effect of expectation. To clarify this, we investigated the nocebo effect, in which the induced expectation decreases force production. Two groups of healthy volunteers (experimental and control) performed a motor task by pressing a piston with the right index finger. To induce a nocebo effect in the experimental group, low frequency transcutaneous electrical nerve stimulation (TENS) was applied over the index finger with instructions of its detrimental effects on force. To condition the subjects, the visual feedback on their force level was surreptitiously reduced after TENS. Results showed that the experimental group reduced the force, felt weaker and expected a worse performance than the control group, who was not suggested about TENS. By applying transcranial magnetic stimulation over the primary motor cortex, we found that while MEP amplitude remained stable throughout the procedure in both groups, the CSP duration was shorter in the experimental group after the nocebo procedure. The CSP reduction resembled previous findings on the placebo effect, suggesting that expectation of change in performance diminishes the inhibitory activation of the primary motor cortex, independently of the behavioural outcome.
منابع مشابه
Non-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملExpectancy Induces Dynamic Modulation of Corticospinal Excitability
Behavioral studies using motor preparation paradigms have revealed that increased expectancy of a response signal shortens reaction times (RTs). Neurophysiological data suggest that in such paradigms, not only RT but also neuronal activity in the motor structures involved is modulated by expectancy of behaviorally relevant events. Here, we directly tested whether expectancy of a response signal...
متن کاملPlacebo-induced changes in excitatory and inhibitory corticospinal circuits during motor performance.
Despite behavioral evidence showing placebo modulations of motor performance, the neurophysiological underpinnings of these effects are still unknown. By applying transcranial magnetic stimulation (TMS) over the primary motor cortex, we investigated whether a placebo modulation of force could change the excitability of the corticospinal system. Healthy human volunteers performed a motor task by...
متن کاملThe contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex
Although transcranial magnetic stimulation (TMS) activates a number of different neuron types in the cortex, the final output elicited in corticospinal neurones is surprisingly stereotyped. A single TMS pulse evokes a series of descending corticospinal volleys that are separated from each other by about 1.5 ms (i.e., ~670 Hz). This evoked descending corticospinal activity can be directly record...
متن کاملModulation of corticospinal output in agonist and antagonist proximal arm muscles during motor preparation
Previous studies have shown modulation of corticospinal output of the agonist muscle when a known-movement is prepared but withheld until a response signal appearance, reflecting motor preparation processes. However, modulation in the antagonist muscles has not been described, despite the fact that reaching movements require precise coordination between the activation of agonist and antagonist ...
متن کامل